

Engineering, Operations & Technology Committee Ensuring Compliance With Water Quality Regulations

Item 6d July 8, 2024 Item 6d

Regulatory Compliance Subject Compliance with drinking water regulations

Describe the regulations for monitoring drinking water and the actions, equipment, and people needed to ensure 100% compliance with those regulations

Next Steps

Purpose

Adapt as necessary to changing environmental and regulatory landscapes to ensure continued compliance

Water Quality Regulations

Federal and State Regulations

- Safe Drinking Water Act 1974, 1986, 1996
 - Surface Water Treatment Rules
 - Interim Enhanced Surface Water Treatment Rule
 - Long Term 1 and 2 Enhanced Surface Water Treatment Rules
 - Stage 1 and 2 Disinfectants and Disinfection Byproducts Rules
 - Revised Total Coliform Rule
 - Consumer Confidence Report Rule
- Six-Year Review, Contaminant Candidate List
- Title 17 and Title 22 California Code of Regulations

Number of Regulated Drinking Water Constituents

Engineering, Operations, & Technology Committee

Regulated Constituents

Comprehensive Surface Water Treatment Rules Quick Reference Guide: Systems Using Conventional or Direct Filtration

Overview of the Rules									
Title	Surface Water Treatment Rule (SWTR) - 40 CFR 141.70-141.75 Interim Enhanced Surface Water Treatment Rule (ESWTR) - 40 CFR 141.170-141.175 Filter Backwash Recycling Rule (FBRR) - 40 CFR 141.76 Long Term 1 Enhanced Surface Water Treatment Rule (LT1ESWTR) - 40 CFR 141.500-141.571								
Purpose	Improve public health protection through the control of microbial contaminants, particularly viruses, Giardia, and Cryptosporidium.								

Comprehensive Disinfectants and Disinfection Byproducts Rules (Stage 1 and Stage 2): Quick Reference Guide

Overview of the Rules

 Stage 1 Disinfectants and Disinfection Byproducts Rule (Stage 1 DBPR) 63 FR 69390, December 16, 1998, Vol. 63, No. 241
 Stage 2 Disinfectants and Disinfection Byproducts Rule (Stage 2 DBPR) 71 FR 388, January 2006, Vol. 71, No. 2

Revised Total Coliform Rule: A Quick Reference Guide

Overview of the Rule Title* Revised Total Coltinum Rule (RTCR) 78 FR 10269, February 13, 2013, Vol. 76, No. 30 Purpose Increase public health protection through the netuction of potential pathways of entry for Secal contamination into distribution systems.

Water Boards STATE WATER RESOURCES CONTROL BOARDS REGIONAL WATER QUALITY CONTROL BOARDS

California Safe Drinking Water Laws

Selected Provisions of the Health & Safety Code and Water Code (As amended, including Statutes 2023)

- Microorganisms
 - Coliforms, Cryptosporidium, Giardia, Viruses
- Disinfectants
- Disinfection Byproducts
 - Trihalomethanes, Haloacetic acids, Bromate
- Inorganic Chemicals
 - Metals, Minerals, Nitrate
- Volatile Organic Compounds
 - Benzene, Styrene, Vinyl chloride
- Synthetic Organic Compounds
 - 1,2,3-TCP, Dioxin, Glyphosate
- Radionuclides
 - Uranium, Radium, Gross Alpha & Beta

100% Compliance With Drinking Water Regulations

Drinking Water

Water Quality's Mission

To safeguard the public's drinking water

- About 70,000 samples per year
- More than 400 constituents monitored
- Over 250,000 test results per year

Metropolitan's water quality meets or surpasses the standards required to safeguard public health

A Day in the Life of a Water Quality Sample

Monitoring plans

Sample collection

Sample receipt at lab

Analysis

12-21 12-36 34-38 34-33 20-50 19-50 23-II ND-50

TITLE

REVISION NO.

HE METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA

VATER QUALITY SECTION QUALITY MANUA CONTROL NO. WD QAP-Rev 0523

EFFECTIVE DATE 6/20/2023 Quality assurance

and **Results review**

Collecting Daily Samples Across Our Vast Service Area

<image>

- 150,000 miles per year
- 70,000 samples in distribution system and at treatment plants
- Additional source water monitoring
- Over 100 sampling locations

Maintenance on a source water monitoring platform

Compliance Monitoring

Hundreds of Samples Received Every Week at Water Quality Laboratory

- Samples logged and checked on receipt
- Chain of custody, collection details
- Sample integrity, temperature, routing for required analyses
- Laboratory Information Management System

	D POLITIAN WATTER with Laboratory section List Site Local Watyes Recurs	DISTRICT OF SOUT - WQL Ion wd	HERS CAU TICK Simpl	# CF	Time 290 Time Coll	manadar Si 13477 07 TGL 10 Ng/	Schedu Ma	led Date Colected SDGA Route pH Field	P: I Ce Sul R: PAC ^a Three	6/14 setuled Di 2024-1 V Depth	V2024 ## 02193 VQ-27 Rec'd Bistor
302+42193-61-2 (LA-21	/		t	1241) Debaie 46	9423 y	14-14-15-	145 A	124	7	
Notes						-	_	A20	NNL (D	de/Tine)	
Codes: Arrbant + Nuom COS = Out of Ser	Reny C+Campia Voe NF+NaPi	anae INC = Nat Collect w IA = traccessible	nd NA+9 N2+7	ka Appilo Not Detec	able "fAC bina.o ted iton.b	 Field analysis c) to exceed 10 re c) collector 	sonpieller mituites	CF+Ca Fact	redar (OT - Class CT = Correc	uni Tera and Tera
	EMP.#	SIGNATURE	1.11	Date	Time	Terps	nsture Upo	n Receipt	(°G)	Total Hilps	8 :1
Collected By	0	CHAR	- 15	111:	24 NA	Themone	= (SA) C	F QT	CT	Mes.Nip	1.80
Relinquished By	C	Ready for Pick Up	20	14/2	4 151	3 1/*1	726 e M ^C	9-0	3.0	Receipt S Sca V Nar	itatus n wal
Rolinquished By										() M	Rec'd
WQL Received By		m	6/1	4/24	1575	1				X Pre	vicusily N

Logging samples upon arrival at the Water Quality Laboratory

Engineering, Operations, & Technology Committee

Daily Monitoring of Bacteriological Water Quality

Coliform analysis using fluorescence technology and agar plates

- Revised Total Coliform Rule
- Coliforms and E. coli
 - Evaluates treatment efficacy
 - Determines integrity of the distribution system
 - Indicates the possible presence of fecal contamination
- 74 compliance locations throughout distribution system
- Monitored 3-4 days per week
- Average monthly samples 700

Warning to boil drinking water in southwest UK after at least 22 cases of illness confirmed – May 2024

Testing for Pathogenic Protozoa in Drinking Water

- Cryptosporidium resistant to chlorine
- Giardia common cause of waterborne disease
- Potential surface water contaminants
- Monthly monitoring at treatment plant influents and effluents

Cryptosporidium and Giardia observed under fluorescence and light microscopy

Testing for Disinfection Byproducts (DBPs)

- 50 routine monitoring locations
- Weekly monitoring
- Chlorination DBPs
 - Trihalomethanes
 - Haloacetic acids
- Ozonation DBPs
 - Bromate
- DBP precursors
 - TOC and Bromide

Comprehensive Disinfectants and Disinfection Byproducts Rules (Stage 1 and Stage 2): Quick Reference Guide

 Stage 1
 Disinfectants and Disinfection Byproducts Rule (Stage 1 DBPR) 63 FR 69390, December 16, 1998, Vol. 63, No. 241

 Stage 2
 Disinfectants and Disinfection Byproducts Rule (Stage 2 DBPR) 71 FR 388, January 4, 2006, Vol. 71 No. 2

Checking water samples

Reviewing sample results

Monitoring Over 100 Chemical Constituents

- Synthetic organic compounds
- Volatile organic compounds
- Metals and minerals
- Radiological materials

					TABL	ED									
					April	2023									
			SOURCE WATERS								TREATMENT PLANT			EFFLUENTS	
CONSTITUENTS	UNITS	LAKE HAVASU	SAN JACINTO TUNNEL	LAKE MATHEWS	LARE	SILVER- WOOD LAKE	LAKE	DIAMOND VALLEY LARE	LARE	WEY- MOUTH	DIEMER	JENSEN	SKINNER	MUS	
SEICA	mg1.	7.0	6.7	7.6	17.1	12.2	3.4	5.5	7.3	12.0	11.5	17.0	7.4	\$1.5	
CALCRIM	mpL	17	76	71	38	22	29	26	73	20	25	39	72	20	
MAGNESIUM	mat	27	28	27	10	в	14	13	27	8	10	10	27	8	
SODIUM	mg1.	100	101	15	\$7	38	63	54	58	35	47	68	103	39	
POTASSIUM	mgL	5.1	5.1	4.7	2.6	2.3	3.6	3.7	5.0	2.6	2.6	2,4	4.8	2.5	
ALKALINITY, CARBONATE AS CO3	mgL	0	1	0	0	0		0	2	0	1	0	0	0	
ALKALINITY, BICARBONATE AS HCO3	mg1.	163	157	160	110	83	129	105	154	79	78	104	152	70	
SULFATE	mg1.	233	237	219	87	44	45	49	229	51	70	112	236	50	
CHLORIDE	mg1.	107	108	102	55	41	85	73	106	34	42	58	110	38	
NITRATE	mg1.	2.0	1.7	0.9	4.6	3.2	0.4	0.5	1.1	3.5	3.3	4,6	1.2	3.4	
FLUORIDE	mgL	0.3	0.3	0.3	0.3	0.1	0.1	0.1	0.3	0.6	0.7	0.8	0.7	0.7	
TOTAL DISSOLVED SOLIDS (TDS)	mgt	640	643	608	327	212	308	211	626	210	252	364	638	208	
TOTAL HARDNESS AS CoCO3	mpL	311	307	290	136	89	129	118	296	81	99	138	291	E0	
TOTAL ALKALINITY AS CaCO3	mgl	134	131	131	10	68	106	86	130	65	66	85	125	57	
FREE CARBON DIOXIDE	mgt.	1.6	1.1	21	2.4	1.7	1.4	1.6	1,1	0.4	0.4	1.0	1.7	0.4	
pH	pH	8.22	8.38	8.11	7.89	7.91	1.16	8.84	8.38	8.55	8.51	1.24	8.17	8.49	
SPECIFIC CONDUCTANCE	pSicm	1050	1040	995	545	365	573	512	1020	357	424	604	1040	357	
COLOR	CU	3	3	3	10	15	5	2	5	1	1	1	1	1	
TURBIDITY	NTU	0.64	0.53	0.46	8.8	9.2	1.7	6.28	0.46	0.06	0.05	0.04	0.05	0.05	
TEMPERATURE	÷	15	16	16	11	11	12	14	12	16	16	15	19	18	
BRÓMIDE	mg1.	0.09	0.06	0.08	0.20	0.12	0.27	0.23	0.87	-	-	-	-	-	
TOTAL ORGANIC CARBON	mgL	2.90	2.95	2.76	2.88	4.78	4.82	2.60	3.00	-					
SATURATION INDEX				-	10.772				-	0.21	0.25	0.15	0.52	0.13	
STATE PROJECT WATER	. %	0	0	0	100	108	100	100	6	100	94	100	1	100	

Satellite Laboratories at Treatment Plants

Plant Operators and Chemists Ensure 24/7 Compliance

- Collect and analyze water samples to support treatment process and regulatory compliance monitoring
 - Samples every 2 hours
 - About 300 samples per day at each plant

Complying with New Stringent Laboratory Accreditation Standards

- Laboratory certification required under California drinking water regulations
- Annual data integrity and ethics training
- Annual Water Quality management review
- Laboratory procedures
 - Demonstration of capability
 - Standard operating procedures
 - Traceability of reagents and solutions
 - Equipment calibration and performance
 - Control tests and blank samples

Checking method performance and quality control samples

Regulatory Compliance Reporting and Engagement

- Monthly/quarterly/annual compliance reporting
 - SWRCB, Division of Drinking Water
 - County Environmental Offices
 - Large system and desert pumping plant domestic water systems
- Regulatory engagement
 - Provide input on regulatory development
 - Quarterly meetings with SWRCB's Division of Drinking Water

Metropolitan Water District of Southern California

Monthly Raw Water Coliform Report

Reporting Period: May 2024

DIEMER			JENSEN			MILLS			
Sample Date	Total Coliforms (MPN/100ml)	E. coli (MPN/100ml)	Sample Date	Total Coliforms (MPN/100ml)	E. coli (MPN/100ml)	Sample Date	Total Coliforms (MPN/100ml)	E. coli (MPN/100ml)	
5/6/2024	214.3	<1	5/6/2024	86.0	1.0	5/5/2024	142.1	4.1	
5/13/2024	3.1	<1	5/13/2024	42.2	4	5/13/2024	24.6	4	
5/20/2024	1.0	<1	5/20/2024	13.1	4	5/20/2024	30.5	1.0	
5/28/2024	3.1	<1	5/28/2024	920.8	4	5/28/2024	9.7	-1	

Metropolitan Water District of Southern California Monthly Distribution System Report

Metropolitan Water District of Southern California

Reporting Period: May 2024

Distribution System Disinfectant Residuals (at Coliform Sample Site)

Calculation of "V", the percentage of distribution samples with a detectable disinfectant residual:

A) ______ The number of samples where the disinfectant residual was measured. (Section 64664(c)(2)(A))

PATHOGEN MONITORING MONTHLY REPORT

Sample Sites	Sample Date	Sample Date CRYPTOSPORIDIUM*			
Treatment Plant Influents					
Diemer Plant Influent	05/06/2024	ND	ND		
Jensen Plant Influent	05/14/2024	ND	ND		
Mills Plant Influent	05/13/2024	ND	ND		
Skinner Plant Influent	05/20/2024	ND	ND		
Weymouth Plant Influent	05/07/2024	ND	ND		
(1996) 2월 🚾 상품 1997년 1997					

Monthly Compliance Reports

July 8, 2024

Item # 6d Slide 16

Annual Drinking Water Quality Report

В	С	D	F	G	н					1		
		State and		Trea	atment Plant Effluents and Distribution System						OF SOUTHERN CALIFORNIA	
Parameter	Units	Federal MCL	PHG	Range Average	Diemer Plant	jensen Plant	Mills Plant	Skinner Plant	Weymouth Plant	Major Sources in Drinking Water		
ercent State /ater Project	*	NA	NA	Range Average	0 - 100 64	100	100	6 - 100 54	0+100 68	NA		
RIMARY STANDARDS	- Mandator	y Health-Rel	ated Standa	ds								
LARITY											TAN WATER	
ombined Filter Ffluent (CFE) Turbidity ^a	NTU %	TT	NA	Highest % s 0.3	0.05 100	0.06 100	0.06 100	0.07 100	0.04 100	Soil runoff		
ICROBIOLOGICAL												
	% Positive	22		Range		Distribution	Systemwide	e 0.0 - 0.2				
otal Coliform Bacteria ^L	Samples	5.0	MCLG = 0	Average		Distribution	Systemwide	0.0	2012/01/02	Naturally present in the environment	VATER 👝	
eterotrophic Plate ount (HPC) Bacteria ^d	CFU/mL	TT	NA	Range Median	ND-1 ND	ND - 64 ND	ND - 1 ND	ND - 1 ND	ND - 1 ND	Naturally present in the environment	JALITY 🎽 🛛	
RGANIC CHEMICALS	-										LAB 🔊	
oluene	ppb	150	150	Range Average	ND	ND	ND	ND	0.6	Discharge from petroleum and chemical refineries	RN CALIFORN	
ORGANIC CHEMICAL	s											
luminum ^e	ppb	1,000	600	Range Highest RAA	ND - 65 124	ND - 290 58	ND - 94 ND	ND - 94 51	ND - 110 122	Residue from water treatment process; runoff and leaching from natural deposits	EARS	
					0.1 - 0.9	0.4 - 0.8	0.1+0.9	0.3 - 0.8	0.6-0.9	and the second second second	1 2024	
uoride ^f	000	2.0	1	Average	Distribution Systemwide: 0.1 - 0.9					deposits; water additive that	4 - 2024	
					0.7	0.7	0.7	0.7	0.7	from fertilizer and aluminum factorie		
						Distribution	Systemwide	± 0.7			Y EXCELLENCE	
itrate (as Nitrogen)	ppm	10	10	Range Average	0.5	0.5	0.6	ND	0.5	Runoff and leaching from fertilizer use; septic tank and sewage; runoff and leaching from natural deposits	L DRINKING	
ADIONUCLIDES [#]											LITY REPORT	
ross Alpha Particle ctivity	pCi/L	15	MCLG = 0	Range Average	ND	ND - 3 ND	ND	ND - 4 ND	ND	Runoff/leaching from natural deposit	od January - December 2023	
ross Beta Particle ctivity	pCi/L	50	MCLG = 0	Range Average	ND	ND	ND	ND ~ 5 ND	ND	Decay of natural and man-made deposits		
ranium	pCi/L	20	0.43	Range Average	ND	ND - 1 ND	ND	ND - 3 ND	ND	Runoff/leaching from natural deposit	$\langle \rangle = \langle \rangle$	
ISINFECTION BYPROD	UCTS, DISH	NFECTANTIR	ESIDUALS, A	ND DISINFECT	ION BYPR	ODUCT PR	ECURSOR	sħ				
and Well-stress sectors of				Panna	16 - 30	16 - 30 12 - 21 12 - 36 14 - 30 14 - 31						
THM)	ppb	80	NA	Mange		Distribution	Systemwide	12 - 56		Byproduct of drinking water	$ \longrightarrow $	
lant Core Locations			1997	Highest LRAA	Highest I RAA	24	17	25	23	27	chlorination	
				•		Distribution	Systemwide	±28				
um of Five Haloacetic				Range	2.2 - 8.9	2.0 - 5.0	1.9 - 9.0	2.3 - 11	ND - 9.0			
cids (HAA5)	ppb	60	NA			Distribution	Systemwide	END-13		Byproduct of drinking water	TER QUALITY IS EQUAL TO UN BEITER	
nd Distribution System)				Highest LRAA	5.5	3.4	9.0	7.4	6.0		and to Mittooked Fublic neatin.	
						Distribution Systemwide: 9.0						

Engineering, Operations, & Technology Committee

Behind the Scenes of 100% Compliance

Microplastics analysis

Cyanotoxin data analysis

Water Quality Challenges and Opportunities

- New regulated monitoring
 - PFAS, microplastics
- New contaminants, emerging DBPs
- Impacts of climate volatility
 - Turbidity, cyanotoxins
- Maintaining water quality in the distribution system
 - Variable demand and low flow
 - Nitrification
- New sources and treatment processes
 - Water reuse

Continued Compliance with Drinking Water Regulations

- Implement methods, upgrade equipment, and conduct research to prepare for new monitoring requirements
- Ensure new programs are compliance-ready
- Finalize design of upgraded Water Quality Laboratory
- Water industry engagement
 - Participate in technical advisory committees and workgroups
 - Provide input and feedback on regulatory development
 - Continue coordination with Member Agencies on water quality and regulatory compliance issues

Artist conceptual rendering of upgraded WQ Lab lobby

Member Agency workshop

